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ount (in
luding spa
es): 76,800Abstra
tGene regulation in ba
teria is usually des
ribed as an adaptive response to an environmental
hange so that genes are expressed when they are required. We instead propose that mostgenes are under indire
t 
ontrol: their expression responds to signal(s) that are not dire
tlyrelated to the genes' fun
tion. Indire
t 
ontrol should perform poorly in arti�
ial 
onditions,and we show that gene regulation is often maladaptive in the laboratory. In Shewanella oneidensisMR-1, 24% of genes are detrimental to �tness in some 
onditions, and detrimental genes tendto be highly expressed instead of being repressed when not needed. In diverse ba
teria, thereis little 
orrelation between when genes are important for optimal growth or �tness and whenthose genes are upregulated. Two 
ommon types of indire
t 
ontrol are 
onstitutive expressionand regulation by growth rate; these o

ur for genes with diverse fun
tions and often seem to besuboptimal. Be
ause genes that have 
losely-related fun
tions 
an have dissimilar expressionpatterns, regulation may be suboptimal in the wild as well as in the laboratory.
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Introdu
tionIn ba
teria, gene regulation is traditionally thought of as an adaptive or homeostati
 me
hanism that allowsthe 
ell to respond to 
hanging metaboli
 
onditions or to environmental stresses (e.g., Wall et al (2004);Seshasayee et al (2009)). The underlying rationale is that proteins �should� be made only when needed soas to 
onserve 
ellular resour
es or be
ause the protein's a
tivity is detrimental in other 
onditions. The
lassi
 example is the indu
tion in Es
heri
hia 
oli of the la
 operon in response to la
tose: the la
 operon isrequired for growth on la
tose, and the la
 operon is very weakly expressed in the absen
e of la
tose. If thela
 operon is arti�
ially indu
ed in the absen
e of la
tose by adding a non-metabolizable analog of la
toseto the medium, then the expression of the la
 operon redu
es the growth rate. This redu
tion in the growthrate re�e
ts the 
ost of produ
ing useless proteins instead of useful ones (Stoebel et al , 2008) and also thedetrimental a
tivity of the La
Y permease in some 
onditions (Eames and Kortemme, 2012). The relativeredu
tion in E. 
oli's growth rate due to produ
ing useless proteins seems to vary a
ross growth 
onditions,but under low-
ost 
onditions, the 
ost is approximately the fra
tion of total protein that is useless (Sha
hraiet al , 2010).Although many spe
i�
 examples of gene regulation appear to be adaptive under laboratory 
onditions,it is not 
lear whether the regulation of the majority of genes is adaptive. Genome-wide studies in bothba
teria and yeast have found little 
orrelation between 
hanges in expression and the importan
e of genesfor �tness (Deuts
hbauer et al , 2011; Giaever et al , 2002; Birrell et al , 2002; Smith et al , 2006). In otherwords, most genes are not down-regulated when they are not needed for growth, and 
onversely, most genesthat are up-regulated do not seem to be important for �tness. This is surprising be
ause under a 
ost-bene�tmodel of optimal expression (Dekel and Alon, 2005), the optimal expression level of a gene will be mu
hlower if there is little or no bene�t (or �tness advantage) than if there is a large bene�t. Thus, there is apuzzle as to why adaptive regulation does not seem to be more widespread in ba
teria.There have been several proposals for why genes might be expressed when they are not needed for �tnessor why they might not be indu
ed when they are needed. More pre
isely, these theories try to explainwhy ba
teria with apparently non-adaptive regulation have not been out-
ompeted by other ba
teria withmore optimal regulation. First, some genes might be expressed in �standby mode� be
ause they will helpthe ba
terium survive if 
onditions 
hange (Fis
her and Sauer, 2005). Standby 
ontrol 
an be thought ofas a way to redu
e the delay inherent in adaptive 
ontrol. If a gene is under adaptive 
ontrol and is notexpressed at all when it is not needed, then after 
onditions 
hange and it be
omes needed, there is a delayuntil enough of the protein is produ
ed to adapt to this new 
ondition. During this delay, the 
ell might stopgrowing or might even die. Thus, un
ertainty about the near future implies some possibility of a bene�t fromexpressing a gene that is not 
urrently needed. If there is a signi�
ant 
han
e of obtaining a bene�t in thefuture then the average future bene�t will ex
eed the (
ertain) 
ost of expressing unneeded protein, so theoptimal expression level will be above zero even though the gene 
urrently 
onfers no bene�t. Conversely, ifthe gene is 
urrently needed but 
onditions might 
hange in the near future, this redu
es the expe
ted bene�tof high expression, and hen
e redu
es the optimal expression level. In other words, optimal standby 
ontrolshould dampen the dynami
 range of expression without 
hanging the pattern. (For a detailed example, seeSupplementary Figure 1.) Thus, optimal standby 
ontrol 
annot explain why there is so little 
orrelationbetween relative expression (i.e., when genes are up-regulated) and mutant �tness (i.e., when they are neededfor optimal growth).A se
ond and related theory is that proteins that are only needed in small amounts might be expressed
onstitutively be
ause the 
ost of adaptive 
ontrol, su
h as the 
ost of making trans
ription fa
tors, mightex
eed the bene�t of making less of the protein when it is not needed (Wessely et al , 2011). The 
ost ofregulation seems small � for example, the La
I repressor is present at only 20-50 
opies per 
ell (Milo et al ,2010) � so this theory should only apply to weakly-expressed genes that have a low 
ost of unne
essaryexpression.A third theory related to 
hanging 
onditions is that mi
roorganisms might use one environmental signalto �anti
ipate� another (Tagkopoulos et al , 2008; Mit
hell et al , 2009). Here the 
hange in environment is(somewhat) predi
table, rather than being entirely random. For example, for a gut ba
terium like Es
heri
hia
oli, a rise in temperature might indi
ate that it has been ingested and will soon rea
h an anaerobi
 environ-ment (Tagkopoulos et al , 2008), so genes for anaerobi
 respiration might be indu
ed even though they arenot immediately useful. It is not 
lear whether anti
ipatory 
ontrol of expression is widespread in ba
teria.2



Fourth, horizontally transferred genes, whi
h are 
ommon in ba
teria, might la
k regulation be
ause ofinsu�
ient time to evolve appropriate regulation in their 
urrent host (Ler
her and Pal, 2008). However,only the most re
ently-transferred genes seem to la
k regulation (Ler
her and Pal, 2008). Also, regulation
an evolve qui
kly (Stone and Wray, 2001; Berg et al , 2004), regulation 
an be 
onserved a
ross transferevents (Pri
e et al , 2008), and many horizontally transferred genes are under 
omplex 
ontrol by multipletrans
ription fa
tors (Pri
e et al , 2008). Thus, we doubt that horizontal gene transfer 
ould explain whythere is little 
orrelation between relative expression (i.e., regulation) and mutant �tness genome-wide.Fifth, the regulation of some genes might be suboptimal or maladaptive be
ause the expression patternsof those genes are not under strong sele
tion. More pre
isely, if altered regulation improves relative growthby less than 1/Ne per generation, where Ne is the e�e
tive size of the ba
terial population and the e�e
ton growth is averaged a
ross natural environments, then this altered regulation is unlikely to take over thepopulation. Sele
tively-neutral evolution 
ould also a

ount for some of the 
omplexity of gene regulation(Lyn
h, 2007). However, both regulatory sites (Rajewsky et al , 2002; M
Cue et al , 2002) and the 
oexpressionof genes (Pri
e et al , 2007) are usually 
onserved between 
losely-related ba
teria, whi
h implies that theregulation of most genes is under some sele
tion. Furthermore, in E. 
oli, over half of all genes are presentat above 0.1 mRNA per 
ell in a single 
ondition, whi
h 
orresponds to 30-60 proteins per 
ell (Lu et al ,2007) or over 1 in 100,000 of all protein mole
ules in the 
ell (Milo et al , 2010). Be
ause the �tness 
ost ofunne
essary expression of a gene is probably at least as great as its proportion of total protein, this impliesthat the �tness 
ost of unne
essary expression of the typi
al gene is at least 10−5 per generation. This isabout the same as the estimated �tness 
ost of mutations in 
odon usage that are under sele
tion (Bulmer,1991). Thus, unne
essary expression of the typi
al protein should be under sele
tion.Finally, we propose that non-adaptive regulation is widespread in ba
teria, at least in laboratory settings,be
ause of two major fa
tors. Firstly, ba
terial genomes en
ode far more operons than regulators. In thetypi
al ba
terium, only 4.2% of proteins are predi
ted to be trans
ription fa
tors (Charoensawan et al ,2010). With so few regulators, most genes are probably regulated by fa
tors that are not dire
tly related totheir fun
tion. We 
all this mode of regulation indire
t 
ontrol. As an example, ba
terial genes are oftenregulated by �global� trans
ription fa
tors that regulate diverse and sometimes fun
tionally-unrelated genes(Martinez-Antonio and Collado-Vides, 2003). Se
ondly, ba
terial regulatory systems have evolved under verydi�erent 
onditions than those being tested in the laboratory. If the utility of a gene's a
tivity 
orrelateswith a fun
tionally-unrelated signal, then regulation by that signal will be sele
ted for in the wild, but this
orrelation will probably not be maintained in arti�
ial 
onditions. So we do not expe
t indire
t 
ontrol thatevolved in the wild to be adaptive under arti�
ial 
onditions. In 
ontrast, if there is a dire
t regulatory linkbetween an environmental signal and the physiologi
al response, as with the la
 operon, then the regulatorysystem 
an perform well outside of the 
onditions that it evolved under.To test these various theories of ba
terial gene regulation, we 
olle
ted genome-wide mutant �tnessdata and gene expression data from the metal-redu
ing ba
terium Shewanella oneidensis MR-1 a
ross 15mat
hing 
onditions. We also examined large 
ompendia of (unmat
hed) �tness and expression data forthis ba
terium. We found that 24% of genes are detrimental to �tness in some laboratory 
onditions, whi
hshows that the regulation of many genes is maladaptive in the laboratory. We 
on�rmed that the 
orrelationbetween relative expression and mutant �tness is weak, as in our previous study with just four 
onditions(Deuts
hbauer et al , 2011). We ruled out some te
hni
al explanations for the weak 
orrelation, su
h asgrowth phase e�e
ts on expression, subtle variations in experimental 
onditions, or geneti
 redundan
y dueto paralogs, and we found little eviden
e of anti
ipatory 
ontrol. As eviden
e of indire
t 
ontrol, we showthat many genes are expressed 
onstitutively instead of being 
ontrolled by trans
ription fa
tors, or areregulated by growth rate. Furthermore, for many genes, this regulation seems to be suboptimal and 
annotbe explained by standby 
ontrol. We also show that genes with 
losely-related fun
tions 
an have ratherdi�erent expression patterns, whi
h suggests that some of them are not under dire
t 
ontrol.To test the generality of our �ndings, we examined the expression and mutant �tness of biosyntheti
 genesin four diverse ba
teria � S. oneidensis MR-1, E. 
oli K-12, the ethanol-produ
ing ba
terium Zymomonasmobilis ZM4, and the sulfate-redu
ing ba
terium Desulfovibrio alaskensis G20. In E. 
oli, biosyntheti
 genesthat were required for �tness in minimal media but not in ri
h media were almost all down-regulated inminimal media, but in the other three ba
teria, this was often not the 
ase. We also 
ompared �tness andexpression data for Z. mobilis ZM4 a
ross 18 mat
hing 
onditions, and found little 
orrelation between relativeexpression and mutant �tness in Z. mobilis ZM4. We 
on
lude that suboptimal regulation is widespread in3



ba
teria, at least under laboratory 
onditions.ResultsMany genes are detrimental to �tness in some 
onditionWe 
olle
ted genome-wide data on mutant �tness and mRNA abundan
e for S. oneidensis MR-1 grown in15 mat
hing 
onditions: Luria-Bertani medium (LB), a de�ned minimal medium with one of eight di�erent
arbon sour
es added, minimal la
tate medium with one of four di�erent stresses, or anaerobi
 respirationof fumarate with two di�erent ele
tron donors. For ea
h 
ondition, we measured �tness using two pools ofmutants that grew for 6-8 generations and we measured gene expression from wild-type 
ells in exponentialphase (see Supplementary Figure 2 for an overview). To ensure that the growth 
onditions were identi
al,mat
hed �tness and expression experiments were 
ondu
ted at the same time. We obtained both expressionand �tness data for 3,247 of the 4,467 protein-
oding genes in the genome. Of the protein-
oding genes thatwe do not have data for, 69% (836/1,220) are essential for growth in LB, are under 300 nu
leotides, or arerepetitive elements su
h as transposases. The mutant �tness for ea
h gene represents the 
hange, a
ross 6-8generations of growth, in the log2 abundan
e of strain(s) with transposons inserted within that gene. The�tness values are normalized so that wild-type would have a �tness value of about zero: negative �tnessindi
ates that the mutant strain is si
k (relative to wild-type) and that the gene's a
tivity is important forgrowth in that 
ondition, while positive �tness indi
ates that the mutant strain has an advantage and thatthe gene's a
tivity is detrimental in that 
ondition.A few genes are strongly detrimental to �tness during aerobi
 growth on la
tate: strains with insertionsin these genes grow better than most other strains and the gene's �tness value is above 0.75 (Figure 1A).Furthermore, strongly-detrimental genes tend to be well-expressed (Figure 1A). Similarly, in all 14 
ondi-tions with strongly-detrimental genes, the majority of these genes are expressed above the median gene.(There are no strongly-detrimental genes in LB.) We also observed a larger number of genes with milderbut potentially-signi�
ant detrimental a
tivity. As des
ribed previously, we used 
ontrol experiments toestimate the reliability of ea
h �tness measurement, whi
h we summarize using a standard normal z s
ore(Deuts
hbauer et al , 2011). A
ross 15 
onditions and 3,247 genes, we had 1,172 �tness measurements with
z > 2.5, while we would expe
t just 302 su
h 
ases by 
han
e (P (z > 2.5) ·3, 247 ·15 ≈ 302). For 
omparison,we had 5,034 �tness measurements of signi�
antly si
k genes (z < −2.5). In all 
onditions, the putativelydetrimental genes were more highly-expressed on average than other genes were (Figure 1B), and in 11 ofthe 15 
onditions, this di�eren
e was statisti
ally signi�
ant (P < 0.05, binomial test). The high expressionof detrimental genes 
on�rms the �tness data, be
ause it is easier for a gene to exert a detrimental e�e
t if itis highly expressed. On the other hand, it is not 
lear why these genes are not down-regulated to eliminatetheir detrimental a
tivity.To examine this issue more broadly, we identi�ed genes that were detrimental to �tness in a 
ompendiumof 195 �tness experiments for S. oneidensis MR-1 (Deuts
hbauer et al , 2011). Be
ause we were interestedin genes that were detrimental to growth or survival, we removed eight experiments that measured motility,leaving us with 187 experiments. To in
rease sensitivity and redu
e false positives, we grouped together�tness experiments that had similar patterns (pairwise 
orrelation above 0.75), giving 38 groups. Withinea
h group and for ea
h gene, we required an average �tness above 0.4 as well as statisti
al signi�
an
e from
ombining z s
ores (P < 0.01 after Bonferonni 
orre
tion for the number of groups). 798 genes (24% of thegenes for whi
h we have �tness data) were signi�
antly detrimental in at least one group of experiments.To validate these detrimental genes, we examined adja
ent pairs of genes that are 
otrans
ribed in the sameoperon. Genes in the same operon often, but not always, have related fun
tions (de Daruvar et al , 2002;Rogozin et al , 2002; Pri
e et al , 2006), so if one of them is detrimental to �tness then the other should moreoften be detrimental. Indeed, one gene in an operon pair was mu
h more likely to be detrimental to �tnessif the other one was (53% versus 17%, P < 10−15, Fisher exa
t test). This 
on�rms that most of these 798genes are genuinely detrimental to �tness in some of our laboratory 
onditions.These 798 genes that are detrimental to �tness are not simply sel�sh genes. They in
lude a wide varietyof fun
tions, and they are not signi�
antly depleted in any COG fun
tion 
ategory (Tatusov et al , 2001) orTIGR subrole (Peterson et al , 2001) (Fisher exa
t test, false dis
overy rate above 0.05). Just 30 of themare annotated as potentially sel�sh elements su
h as transposases, prophages, or restri
tion systems. 4214



of the detrimental genes (53%) are important for growth or survival in another group of experiments inour 
ompendium (�tness under -0.4 and P < 0.01 after Bonferonni 
orre
tion). Some of the detrimentalgenes are involved in motility, whi
h is 
onsistent with previous reports (Deuts
hbauer et al , 2011; Langridgeet al , 2009; Koskiniemi et al , 2012) and might re�e
t our unnaturally well-shaken growth 
onditions. Butwe doubt that motility 
an a

ount for most of the detrimental genes. We previously measured mutantmotility in S. oneidensis MR-1 by assaying the abundan
e of mutant strains that rea
hed the outer ring ofa soft agar plate (Deuts
hbauer et al , 2011). (These are the same experiments that were removed from the�tness 
ompendium be
ause they did not measure growth or survival.) 34% of the 798 detrimental geneshave a motility ��tness� of under -0.4, as 
ompared to 13% of other genes. Although the detrimental genesare enri
hed in motility genes (P < 10−15, Fisher exa
t test), motility and sel�shness together only explainaround a third of the detrimental genes. The regulation of the 421 genes that are sometimes detrimental andsometimes important for growth � 13% of the genes that we have �tness data for � is suboptimal, at least inour laboratory 
onditions, as these genes �should� be repressed when they are detrimental to growth.To test whether genes tend to be down-regulated when they are detrimental to �tness, we 
onsidered genesthat are likely to be detrimental to �tness in one of our 15 mat
hed 
onditions (z > 2.5) and 
ompared theirexpression in that 
ondition to their median expression a
ross all the 
onditions. We ex
luded prophagesand other potentially sel�sh genes from this analysis be
ause we observed the indu
tion of 100 prophagegenes by over 4-fold in nalidixi
 a
id, whi
h is probably a �sel�sh� response to DNA damage (Qiu et al ,2004). We did not �nd a signi�
ant tenden
y for genes to be downregulated when they are detrimental to�tness: the mean relative expression was 0.03 for detrimental genes and 0.06 for other genes (P > 0.1, t test;
n = 1,094 and 45,466, respe
tively). This shows that the detrimental a
tivity of most of these genes 
annotbe explained by optimal standby 
ontrol: under this model, if genes are expressed be
ause they might beneeded after a 
hange in 
onditions, then they should still be downregulated (Supplementary Figure 1).Relative expression is little 
orrelated with �tnessTo test if ba
terial gene regulation is adaptive genome-wide, we asked if genes are upregulated when they areneeded for �tness and downregulated when not needed for �tness. We �rst 
ompared di�erential expressionand the di�eren
e of mutant �tness between pairs of 
onditions. We performed 14 
omparisons derivedfrom our 15 
onditions, with aerobi
 growth in minimal la
tate media as the 
ommon 
ontrol. For example,Figure 2A shows a 
omparison of relative expression and di�erential �tness for aerobi
 growth in a
etateversus la
tate. If there was a strong relationship between relative expression and �tness, then genes thatare more important for �tness on a
etate than on la
tate (i.e., a �tness di�eren
e below zero) would alsobe upregulated (i.e., an expression log2 ratio above zero), and there would be a strong negative 
orrelationbetween di�erential �tness and relative expression. Instead, the 
orrelation is statisti
ally signi�
ant but isvery weak (r = −0.15, P < 10−15; Figure 2A). In all of the 
omparisons, the 
orrelation between di�erentialexpresion and �tness is weak (r = −0.15 to +0.11).We noti
ed that biosyntheti
 genes tend to be expressed at lower levels on a
etate than on la
tate, whilebeing important for �tness in both 
onditions. Spe
i�
ally, 67 putative biosyntheti
 genes (Peterson et al ,2001) were important for �tness in la
tate and a
etate (both �tness under -0.75) but not in LB (�tness above-0.4), and the average log2 levels of these genes was 1.1 in la
tate and -0.2 in a
etate (P < 10−12, paired t test).Low expression of these genes on a
etate might re�e
t the lower growth rate of S. oneidensis MR-1 on a
etaterelative to la
tate, whi
h implies a lower �ux through biosyntheti
 pathways. After removing biosyntheti
genes, the 
orrelation between di�erential �tness and relative expression is still very weak (r = −0.08). Thisane
dote illustrates that genes that are important for �tness in both 
onditions might 
hange expressionbe
ause of varying �ux, so we fo
used on genes that are important for �tness in one 
ondition but not theother or on genes that are not important for �tness in either 
ondition.In most of the 
omparisons, genes that are important for �tness in just one of the two 
onditions do tendto 
hange expression in the expe
ted dire
tion (e.g., Figure 2B). However, over a third of these di�erentially-�t genes 
hange expression the �wrong� way (i.e., lower expression on a
etate for genes that are importantonly on a
etate or lower expression on la
tate for genes that are important only on la
tate). The twodistributions of expression 
hanges (for the two types of di�erentially-�t genes) overlap 
onsiderably, whi
h
an be quanti�ed with the Kolmogorov D statisti
, whi
h depends only on the relative ranks of the valuesand ranges from 0 for identi
al distributions to 1 for distributions that do not overlap. For a
etate versus5



la
tate, D = 0.23. For all of our 
omparisons, there is 
onsiderable overlap in the distributions of relativeexpression between genes that are si
k only in one 
ondition or only in the other (Figure 2C, D = 0.12 to0.71). In a few 
onditions, genes that are di�erentially important for �tness are just as likely to 
hangeexpression in the �wrong� dire
tion. For example, of 22 genes that are important for �tness with 
opperstress but not without it, 12 are downregulated on 
opper stress (Figure 2D).To test the 
ases where a gene's expression 
hanges in the opposite dire
tion than expe
ted given the�tness data, we examined the expression of adja
ent genes that are in the same operon. For the 
omparisonbetween a
etate and la
tate, there are 18 operon pairs in whi
h one or both genes are expressed more highlyin one 
ondition but are important for �tness only in the other 
ondition. For 12 pairs, the two genes showedthe same dire
tion of 
hange and for the other 6 pairs, both genes show little 
hange in expression (bothabsolute log2 ratios were under 0.5). Similarly, we tested operon pairs that in
lude genes that are importantfor �tness with 
opper stress but not without it and are downregulated during 
opper stress. For six of sevenoperon pairs, both genes were downregulated during 
opper stress, and for the remaining pair, the expressionof both genes was little 
hanged on 
opper stress (both absolute log2 ratios were under 0.25). These �ndings
on�rm the non-adaptive regulation of these genes.Conversely, many of the genes with large 
hanges in expression are not important for �tness in either
ondition. In the 
omparison of a
etate and la
tate, of 114 genes that 
hanged expression by four-fold ormore, 70 (61%) have little e�e
t on �tness in either 
ondition (both �tness values between -0.4 and 0.4). Forall of our 
omparisons, this proportion was at least 60%, with a maximum of 87% for a
id stress. To test the
hanges in expression for the genes that are not important for �tness, we again examined the expression ofadja
ent genes in operons. In 81% of 
ases (2,309 of 2,835), the other gene was upregulated or downregulatedin the same dire
tion and with an absolute log2 ratio of at least 0.5. By 
han
e, we would expe
t this too

ur only 21% of the time (P < 10−15, χ2 test of proportions). (The expe
tation is 21% be
ause a
ross our14 
omparisons, expression 
hanges by 0.5 or more in 42% of 
ases, and the 
hange will be in the 
orre
tdire
tion in half of those 
ases.)It is possible that the 
hange in expression of these genes is adaptive be
ause these genes have subtle �t-ness bene�ts in one 
ondition but not the other. To test this, we examined genes without strong phenotypes(�tness between -0.4 and 0.4) and 
ompared the genes that were up-regulated by two-fold or more (relativeto the median a
ross our experiments) to genes that were down-regulated by any amount. On
e again weex
luded prophages and other potentially sel�sh genes. The up-regulated genes had slightly lower average�tness than the down-regulated genes (-0.01 and +0.001, respe
tively; P = 0.0002, t test), but the distribu-tions were quite similar (D = 0.05). The two-fold up-regulated genes were about as likely to be signi�
antlysi
k as the down-regulated genes: at a 
uto� of z < −2.5, whi
h 
orresponds to a false dis
overy rate of 32%for these genes with mild phenotypes, 2.2% of up-regulated genes and 1.9% of down-regulated genes weresigni�
antly si
k. (These proportions are not signi�
antly di�erent: P > 0.2, Fisher exa
t test). Be
auseit is di�
ult to measure very small di�eren
es in �tness, we 
annot rule out the possibility of subtle �tnessbene�ts of the up-regulated genes. However, be
ause the up-regulated genes have very similar phenotypes asthe down-regulated genes, and be
ause genes with stronger phenotypes show a modest 
orrelation betweenrelative expression and �tness, we suspe
t that the up-regulation of most of the genes without strong �tnessbene�ts is not adaptive.Another way to ask if gene regulation is adaptive is to look at the 
orrelation, for any given gene, betweenexpression level and mutant �tness a
ross the 15 
onditions (see examples in Figure 3A). If a gene is morehighly expressed when it is important for �tness, then we should see a strong negative 
orrelation (e.g., tyrAin Figure 3A). Instead, the distribution of �tness-expression 
orrelations for all genes is about the same as ifwe shu�e the data and 
ompare a gene's �tness pattern to another random gene's expression pattern (Figure3B). The a
tual distribution is signi�
antly di�erent from the shu�ed distribution (P = 0.01, Kolmogorov-Smirnov test) but the di�eren
e is slight, with average 
orrelations of 0.00 and 0.01, respe
tively.We used the �tness-expression 
orrelation of ea
h gene to test whether geneti
 redundan
y might bean explanation for why gene regulation does not appear adaptive. For example, if there are two partially-redundant genes whose a
tivity is important for �tness in a 
ondition, one of them might be upregulatedin that 
ondition, but kno
king it out might have only a subtle phenotype be
ause the other gene is stilla
tive. Su
h redundan
y is often asso
iated with paralogs (although paralogs in S. oneidensis MR-1 oftenhave dete
table phenotypes when mutated (Deuts
hbauer et al , 2011)). We 
ompared the distribution ofexpression-�tness 
orrelations for 392 genes in our data set that have paralogs (above 30% identity) to the6



distribution for genes that la
k paralogs and found little di�eren
e (means of 0.014 versus 0.002, P = 0.4, ttest). Thus, geneti
 redundan
y between paralogs does not explain the la
k of a 
orrelation between relativeexpression and mutant �tness in S. oneidensis MR-1. Also, although we did not test geneti
 redundan
ymore broadly, geneti
 redundan
y 
annot explain why genes are often detrimental to �tness.Overall, when we 
ompare relative expression to di�erential �tness, either by sele
ting pairs of 
onditionsor by examining ea
h gene a
ross all 15 mat
hing 
onditions, we �nd that they are weakly 
orrelated. Thisstrongly suggests that the regulation of many genes is not adaptive under our laboratory 
onditions.Genes with 
lose fun
tional relationships are often not 
oregulatedTo 
on�rm that gene expression patterns are often not 
orrelated with a gene's fun
tion, we examined the
oexpression of genes that have 
losely-related fun
tions but are not in the same operon. Using a 
ompendiumof 195 diverse �tness experiments for S. oneidensis MR-1 (Deuts
hbauer et al , 2011), we identi�ed 240 pairsof genes that were highly 
o�t (
orrelation of �tness above 0.8), were annotated with the same TIGR subrole(Peterson et al , 2001), did not belong to the same predi
ted operon (Pri
e et al , 2005; Dehal et al , 2009),and were not nearby ea
h other in the genome (not within 10 genes of ea
h other). When we examined the
oexpression of these fun
tionally-related pairs a
ross 329 expression experiments for S. oneidensis MR-1, wefound that they have only a moderate tenden
y to be 
oexpressed (Figure 3C). For example, 83% of operonpairs have a 
oexpression of 0.5 or higher, but just 43% of the 240 fun
tionally-related non-operon pairsdo. Furthermore, a

ording to gene regulation that was predi
ted via 
omparative genomi
s and manually
ompiled in RegPre
ise (Novi
hkov et al , 2010), these fun
tionally-related pairs are usually not 
oregulated:of the 240 pairs, there is a regulatory predi
tion for at least one gene among 97 pairs, and both genes arepredi
ted to be regulated by the same trans
ription fa
tor in only 7 
ases.To test this more 
arefully, we manually examined the 76 pairs of genes with a 
lose fun
tional relationshipbut little 
oexpression (r < 0.3). Thirty six of the 76 pairs had known fun
tional di�eren
es or showeddi�eren
es in �tness in a few 
onditions that might explain their limited 
oexpression (Dataset 2). Forexample, genes for both proline and arginine synthesis have the TIGR subrole �Amino a
id biosynthesis:Glutamate family� and show similar �tness in most, but not all, of our 
onditions. It is not surprising thatthey might be regulated di�erently. These pairs re�e
t the limited resolution of the fun
tional 
lassi�
ation.Another 18 pairs of genes were from �agellar operons �iKLMNOPQR-�hB, �gL1-�aG-�iD-SO_3234-�iS,�gFGHIJ-SO_3239.3-SO_3239.2-�gL2-�gL3, �gBCDE, and �gAMN. Some of the di�eren
es in expressionof these genes might re�e
t the sequential a
tivation of di�erent stages of assembly of the polar �agellum,whi
h has been studied in detail in related ba
teria (e.g., (Prouty et al , 2001; Dasgupta et al , 2003)). InPseudomonas aeruginosa, seven of these 18 pairs of genes are 
o-regulated and are in the same �
lass�of trans
ripts (Dasgupta et al , 2003), so it is not 
lear that these genes are needed at di�erent times.The remaining 22 pairs of genes were from operons with 
losely-related fun
tions for whi
h there was noapparent reason for the expression to di�er. Spe
i�
ally, these pairs of genes were from aromati
 amino a
idsynthesis operons aroA, aroC, aroE, aroQ, and aroKB; menaquinone synthesis operons menA, menB, menF,and menDHCE; bran
hed-
hain amino a
id synthesis operons ilvGMDA, ilvC, and ilvE; pyrimidine synthesisgenes pyrC, pyrD, and pyrF; methionine synthesis operons metBL and metC; lipid A synthesis genes lpxLand lpxM; mismat
h repair genes mutL and mutS; and 
hromosome separation genes xerC and xerD. Amongthese genes, mutL, pyrD, pyrF, and xerC are in operons with fun
tionally-unrelated genes, while the othergenes listed individually are trans
ribed separately, as determined using high-resolution �tiling� mi
roarraysand 5'-end RNA sequen
ing (see Materials and methods).If gene regulation evolves to an optimum, then it is di�
ult to explain why the regulation of thesefun
tionally-related genes or operons would be di�erent, espe
ially for genes that are not 
otrans
ribedin operons with fun
tionally-unrelated genes. One possibility is that for pathways that have a low 
ostof expression, the �rst and last steps of a pathway should be regulated while the middle steps should beexpressed 
onstitutively � this 
an be an e�
ient way to trans
riptionally 
ontrol the �ux through thepathway as demand for its produ
t 
hanges (Wessely et al , 2011). However, a low 
ost of expression requiresa low level of expression and also that the gene's a
tivity should not be detrimental to �tness. Instead, wefound that the genes in these pairs tend to be more highly expressed on average than other genes (P < 0.002,
t test, using the median expression of ea
h gene a
ross our 15 
onditions) and that they are more likely tobe detrimental to �tness than other genes (P = 0.005, Fisher exa
t test). Overall, the la
k of 
oexpression7



for these genes with 
losely-related fun
tions appears to be suboptimal, but it is di�
ult to rule out otherexplanations.Suboptimal 
ontrol via 
onstitutive or growth-rate regulation of many genesOne explanation for why there is little 
orrelation between �tness and expression is that some genes areexpressed 
onstitutively and are not under adaptive regulation. Using a 
ompendium of 329 expressionexperiments for S. oneidensis MR-1, we identi�ed 641 putative 
onstitutive genes (17% of the genes withexpression data) that have relatively 
onstant patterns of expression. A

ording to RegPre
ise predi
tions(Novi
hkov et al , 2010), these genes are mu
h less likely than other genes to be regulated by spe
i�
 tran-s
ription fa
tors or by spe
ialized sigma fa
tors (3.6% versus 16.1%, P < 10−15, Fisher exa
t test). Thissupports the idea that these 
onstitutive genes are not subje
t to adaptive 
ontrol.We also hypothesized that many genes would be regulated by growth rate, be
ause at higher growthrates, a higher proportion of 
ellular resour
es are devoted to trans
ription and translation (Bremer andDennnis, 1996). By looking for genes that were 
o-expressed with 
omponents of the ribosome, we identi�ed391 genes (10% of the genes with expression data) as putatively growth-regulated. We 
on�rmed that thesegenes tend to be regulated by growth, via the stringent response, by examining their promoter sequen
es(see Materials and methods).Constitutive and growth-regulated genes are fun
tionally diverse, and most types of fun
tions are repre-sented in both sets. For 
onstitutive genes, the only TIGR subrole that is signi�
antly depleted is ele
trontransport (false dis
overy rate under 0.05, Fisher exa
t test). For growth-regulated genes, the only TIGRsubrole that is signi�
antly depleted is anion transport (false dis
overy rate under 0.05).Not surprisingly, 
onstitutive genes and growth-regulated genes do not show a 
orrelation between �tnessand expression: a
ross our 15 mat
hing 
onditions, the two groups have mean �tness-expression 
orrelationsof 0.01 and 0.00, respe
tively (both P > 0.5, t test). Together these a

ount for 21% of the genes for whi
hwe have both �tness and expression data, so 
onstitutive or growth-regulated expression 
ould explain thela
k of adaptive 
ontrol for many genes.These genes might la
k adaptive 
ontrol be
ause the bene�t of regulation would be lower than the 
ost ofmaking trans
ription fa
tors to regulate them. In this 
ase, expressing them when they are not important for�tness should not be 
ostly, so they should be weakly expressed and their a
tivity should not be detrimentalto �tness. However, 49% of growth-regulated genes and 28% of 
onstitutive genes are detrimental to �tnessin some 
onditions. Furthermore, detrimental genes are more likely than other genes to be growth-regulatedor 
onstitutive (P = 10−12 and P = 0.03, respe
tively, Fisher exa
t test). Many of the growth-regulateddetrimental genes are involved in motility, whi
h might not be detrimental under more natural 
onditions.After removing genes that are important for motility (i.e., motility ��tness� < −0.4), detrimental genes arestill more likely than other genes to be 
onstitutive or growth-regulated (24% vs. 16%, P < 10−4, Fisherexa
t test). We did �nd that 
onstitutive genes are unlikely to be highly expressed: for example, using themedian expression in our mat
hing 
onditions, only 6% of 
onstitutive genes are expressed two-fold above themedian gene, while 27% of other genes are (P < 10−15, Fisher exa
t test). 278 of the 
onstitutive genes (54%of them, or 9% of the genes that we have data for) are expressed less than two-fold above the median genein all of our mat
hing 
onditions and are also not detrimental to �tness in our 
ompendium. Constitutiveexpression of these genes might be due to the high 
ost of regulation. In 
ontrast, growth-regulated genestend to be highly expressed, with a median expression in our 15 mat
hing 
onditions that is roughly 3-foldhigher than for other genes (P < 10−15, Wil
oxon test). Thus, we found that many of the 
onstitutive genesand most of the growth-regulated genes have a high 
ost of expression, whi
h is not 
onsistent with the
ost-of-regulation theory.Another potential rationale for growth regulation is that these genes have 
onsistent but subtle defe
tsin growth. In other words, they might always be bene�
ial to express, but not essential. However, manualexamination of our �tness 
ompendium suggested that growth-regulated genes tend to have variable pheno-types. Consistent with this, a
ross 187 �tness experiments, growth-regulated genes tended to have a highstandard deviation of �tness, with the average of the standard deviations being 0.87 for growth-regulatedgenes and 0.43 for other genes (P < 10−15, t test).Overall, we found that fun
tionally-diverse genes are expressed 
onstitutively or are regulated by growthrate. Some of these genes are 
onstitutively expressed at low levels without being detrimental to �tness, so8



that there might not be a su�
ient bene�t for adaptive 
ontrol to evolve. But many other 
onstitutive orgrowth-regulated genes have a high 
ost of expression and have phenotypes that vary a
ross 
onditions, sotheir regulation appears to be suboptimal.Amino a
id synthesis and 
ataboli
 pathways a

ount for most of the genes underadaptive 
ontrolTo try to identify a subgroup of genes in S. oneidensisMR-1 that might show more 
orrelation between �tnessand expression, we 
onsidered only the 832 genes that strongly a�e
t �tness in at least one of our 15 mat
hingexperiments (maximum |�tness| > 0.75). As shown in Figure 3D, among genes that a�e
t �tness, 
onstitutiveand growth-
orrelated genes still show no �tness-expression 
orrelation (both P > 0.4, t test), but some ofthe other genes do (mean -0.11, P < 10−13, t test). Of the other genes that a�e
t �tness (not in
luding
onstitutive or growth-regulated genes), 16% have strong negative �tness-expression 
orrelations of under-0.5 and are probably under adaptive 
ontrol. Many of these genes are involved in amino a
id biosynthesis(Figure 3E). For example, of the 60 genes with a �tness-expression 
orrelation under −0.5 and an annotatedTIGR subrole, 31 (52%) were involved in amino a
id biosynthesis. No other fun
tional 
ategory was enri
hedin genes with strong �tness-expression 
orrelations, but 11 of these genes are involved in the 
atabolism of the
arbon sour
es we used (fadAB, deoC, gnd, edd, zwf, astB, nagABK, and SO_3774). Amino a
id synthesisand 
ataboli
 genes might be regulated adaptively be
ause the 
on
entrations of internal metabolites providesimple indi
ators of whether their a
tivity is likely to be bene�
ial, be
ause their importan
e for �tness variesstrongly a
ross 
onditions, or be
ause unne
essary expression of these genes is parti
ularly deleterious.We also 
onsidered the hypothesis that the regulation of genes that are more highly expressed would beunder stronger sele
tion and hen
e that highly-expressed genes would be more adaptively regulated. Genesthat are more highly expressed tend to have a stronger (more negative) expression-�tness 
orrelation, but thee�e
t is weak (Spearman rank 
orrelation = -0.11, P < 10−9). We then 
onsidered only the �well-expressed�genes that have a phenotype in at least one of our mat
hed 
onditions and whi
h do not a�e
t motility. Morepre
isely, we 
onsidered genes that have a median expression, a
ross our 15 mat
hed 
onditions, of at leasttwo-fold above the median gene. Then we removed genes that have �tness between -0.75 and +0.75 in all ofour mat
hed 
onditions or have motility ��tness� under -0.4. Of the remaining 76 genes, 35 are biosyntheti
genes that are important for �tness in minimal media, and the median expression-�tness 
orrelation of thesebiosyntheti
 genes is -0.49. For the remaining well-expressed genes, the median expression-�tness 
orrelationis just -0.08, whi
h is signi�
antly weaker than for the well-expressed biosyntheti
 genes (P < 0.001, Wil
oxonrank sum test) and is about the same as for the less-expressed genes that have phenotypes (median -0.07;
P > 0.5, Wil
oxon test). Overall, high expression does not seem to be a strong indi
ator of whether a gene'sregulation will be adaptive in the laboratory.Little eviden
e for anti
ipatory 
ontrolAnother possible explanation for the weak 
orrelation between expression and �tness is that the ba
terium isanti
ipating growth in a di�erent environment (Tagkopoulos et al , 2008; Mit
hell et al , 2009). We systemat-i
ally looked for eviden
e of anti
ipatory 
ontrol by 
onsidering all pairs of our 
onditions. Given 
onditionsA and B, if the organism uses A to anti
ipate B, then genes that are required for growth on B but not on Ashould be upregulated on A (relative to a 
ontrol 
ondition) as 
ompared to genes that are not required forgrowth in either 
ondition. We used the median expression a
ross the 15 
onditions as the 
ontrol and testedthe 203 pairs of 
onditions that have at least 10 di�erentially-�t genes. We found only two 
ases of potentialanti
ipation that were statisti
ally signi�
ant (P < 0.01, Wil
oxon test with Bonferonni 
orre
tion).The most signi�
ant e�e
t was that growth on CAS, a mixture of amino a
ids, �anti
ipated� growthon gelatin (
orre
ted P < 10−8). Rather than being a form of anti
ipatory 
ontrol, we suspe
t that S.oneidensis MR-1 
annot distinguish growth on the peptides in gelatin from growth on amino a
ids, so itexpresses genes for taking up peptides whenever amino a
ids are present. Of the 15 genes that were si
k ongelatin but not on CAS and that were up-regulated two-fold or more on CAS, three are involved in peptideuptake (SO_1822, SO_3194.1, and SO_3195). These may be examples of indire
t 
ontrol.The other signi�
ant e�e
t was that aerobi
 growth on pyruvate anti
ipated anaerobi
 growth on N-a
etylglu
osamine (NAG) with fumarate as the ele
tron a

eptor (
orre
ted P < 10−6). Of 33 genes that9



are important for �tness with NAG/fumarate but not on pyruvate, 7 genes were up-regulated by 1.5-fold ormore on pyruvate. Three of these genes form a hydrogenase operon (SO_2099:SO_2097) that is predi
tedto be regulated by Crp and Fnr (Novi
hkov et al , 2010), and three of the other four genes are predi
ted to beregulated by Crp or Fnr (

mC, 

mA, and 

mH). Crp and Fnr are both regulators of anaerobi
 respirationin this organism (Sa�arini et al , 2003; Cruz-Gar
ía et al , 2011), and both the Crp and Fnr regulons areupregulated on pyruvate (both P < 10−8, t test) so we spe
ulate that oxygen levels might drop during bat
haerobi
 growth on pyruvate. Alternatively, there may be another signal for these regulators.Broadly, we found little eviden
e of anti
ipatory 
ontrol in S. oneidensis MR-1 a
ross our 15 
onditions.A theoreti
al analysis of anti
ipatory 
ontrol suggests that, under a wide range of parameters, optimalanti
ipation involves a small response (relative to the response when the anti
ipated 
ondition a
tuallyo

urs) (Mit
hell and Pilpel, 2011). So our results should not be seen as eviden
e that anti
ipatory 
ontrol isnot o

uring; rather, they suggest that anti
ipatory 
ontrol does not strongly a�e
t genome-wide expressionpatterns and 
annot explain why we observe little 
orrelation genome-wide between mutant �tness andrelative expression.Variation in expression during the growth phase does not explain the la
k of
orrelation with �tnessAnother potential reason for low agreement between relative expression and mutant �tness is that we mea-sured expression at one time during the growth 
urve (in mid-exponential phase), while our �tness datare�e
ts the importan
e of the gene throughout the growth 
urve. For example, if a gene is important forthe early adjustment to growth in a new 
ondition but not afterwards, then at the end of the experiment,the mutant strains would have redu
ed abundan
e and the gene's �tness would be negative, yet it wouldbe adaptive for the gene to be less-expressed in mid-exponential phase. In a previous study we examinedgrowth 
urves for 48 S. oneidensis MR-1 mutants with a variety of �tness values (Deuts
hbauer et al , 2011).Just two mutants grew at a normal rate but with a long lag, and most �tness defe
ts were re�e
ted in thegrowth rate during mid-exponential phase. Be
ause most genes that a�e
t �tness are important for growthduring exponential phase when we 
olle
ted samples for gene expression, growth phase e�e
ts are unlikelyto explain why there is little 
orrelation between expression and �tness.To more dire
tly test how the relationship between expression and �tness might vary with the growthphase, we measured expression at various points in time during bat
h growth in ri
h media (LB) or inde�ned medium with la
tate or N-a
etylglu
osamine (NAG) as the 
arbon sour
e. The 
orrelation betweendi�erential expression and �tness (
omputed as in Figure 2A) varied a
ross time points, but was neverdramati
ally tighter than in our original experiments. For la
tate versus LB, the original 
orrelation was
−0.11 and the best 
orrelation during the time 
ourse was −0.25; for la
tate versus NAG, the original
orrelation was −0.06 and the best was −0.11; and for NAG versus LB, the original 
orrelation was −0.25and the best (during the time 
ourse) was −0.21. The 
orrelation between di�erential expression and �tnessalso remained moderate if we used the maximum expression of ea
h gene during ea
h time 
ourse. (The
orrelations were −0.18 for la
tate versus LB, −0.06 for la
tate versus NAG, and −0.14 for NAG versus LB,respe
tively.) Thus, the time at whi
h we measured expression does not explain the low 
orrelation betweendi�erential expression and �tness.Repression of biosyntheti
 pathways in ri
h media is not the normTo extend our analysis to diverse ba
teria, we 
ompared the expression and �tness of biosyntheti
 genesbetween ri
h and minimal media in four organisms: Es
heri
hia 
oli K-12, Shewanella oneidensis MR-1,the ethanol-produ
ing ba
terium Zymomonas mobilis ZM4, and the anaerobi
 sulfate-redu
ing ba
teriumDesulfovibrio alaskensis G20. As shown in Figure 4, auxotrophi
 genes � genes that are annotated inbiosyntheti
 pathways (Peterson et al , 2001) and are important for �tness in minimal media but not in ri
hmedia � tend to be upregulated on minimal media in E. 
oli K-12 and in S. oneidensis MR-1, with averagelog2 ratios of 1.5 and 0.84, respe
tively (P < 10−15 and P < 0.001, t test). However, in Z. mobilis ZM4 andin D. alaskensis G20, auxotrophi
 genes are not upregulated in minimal media (both P > 0.3, t test).Surprisingly, in S. oneidensis MR-1, 28 of the auxotrophi
 genes are down-regulated in minimal media,and 15 of these are involved in nu
leotide synthesis. These genes are s
attered a
ross 11 di�erent operons10



� guaBA, purC, purEK, purF, purHD, purL, purMN, pyrC, pyrD, pyrE, pyrF � so this pattern has evolvedindependently many times. pyrD and pyrE are in operons with fun
tionally-unrelated genes, but there is noobvious reason why the other nine operons are not regulated by nu
leotide availability. The expression time
ourses for LB, la
tate, and NAG 
on�rm that the 15 nu
leotide synthesis genes are more highly expressedduring log phase growth in LB � whi
h 
ontains nu
leotides � than at any phase of growth in de�ned media.Although mutants in guaBA do show a mild growth defe
t in LB, whi
h suggests that their a
tivity might berequired, mutants in the other nu
leotide synthesis genes do not. Thus, in S. oneidensisMR-1, the expressionof nu
leotide synthesis genes does not respond to the availability of nu
leotides or the 
ell's requirements forthese genes.We propose that E. 
oli K-12 has evolved dire
t regulation of biosyntheti
 pathways by the relevant endprodu
ts so that it 
an e�
iently utilize many di�erent 
arbon sour
es, in
luding amino a
ids and nu
leotides.In parti
ular, the swit
h between degrading and synthesizing these 
ompounds may require regulation toavoid futile 
y
les in metabolism. In 
ontrast, S. oneidensis MR-1 is adapted for utilizing amino a
ids butnot nu
leotides: it does grow on DNA or on a few nu
leosides as 
arbon sour
es, but more slowly thanon peptides, and it 
annot utilize nu
leobases (Serres and Riley, 2006; Pin
huk et al , 2008). A genome-s
ale metaboli
 model suggests that during growth on adenosine, deoxyadenosine, or inosine, it degradesthe ribose or deoxyribose portion and se
retes the nu
leobases (Pin
huk et al , 2010). If S. oneidensis MR-1is not adapted to utilizing nu
leobases, this might explain why it does not 
ontrol the expression of thesesynthesis pathways by nu
leotide availability. Finally, Z. mobilis ZM4 and D. alaskensis G20 do not, as faras we know, use amino a
ids or nu
leotides as 
arbon sour
es and may not have en
ountered high levels ofamino a
ids or nu
leotides often enough for trans
riptional regulation of these pathways in response to those
ompounds to be sele
ted for. Overall, we found that biosyntheti
 pathways are often not downregulatedwhen their end produ
ts are available.Little 
orrelation between relative expression and �tness in Zymomonas mobilisZM4To test the relationship between relative expression and �tness in another ba
terium in diverse 
onditions,we 
olle
ted mutant �tness data and gene expression data for Zymomonas mobilis ZM4 a
ross 18 
onditions.As Z. mobilis ZM4 
an only use a few sugars as 
arbon sour
es, we studied growth in ri
h and minimalmedia and in various stresses. First, we examined relative expression and di�erential �tness between pairsof 
onditions, with growth in ri
h media as the 
ommon 
ontrol 
ondition. A
ross 17 
omparisons, themedian 
orrelation between relative expression and di�erential �tness was just -0.01, so there was littletenden
y for genes that were more important for �tness to be upregulated. (The only 
ondition with a
orrelation under -0.1 was ethanol stress, with a 
orrelation of -0.22.) Se
ond, unlike in S. oneidensis MR-1,in Z. mobilis ZM4 there was no signi�
ant di�eren
e between the distribution of per-gene �tness-expression
orrelations and the shu�ed distribution (P > 0.5, Kolmogorov-Smirnov test with 1,568 genes and 1,568
ontrols). The mean 
orrelations were 0.007 and 0.006, respe
tively. After removing genes without �tnesse�e
ts, 
onstitutively-expressed genes, and growth-regulated genes, the mean 
orrelation remained at 0.007.Overall, the 
orrelation between expression and �tness was weaker in Z. mobilis ZM4 than in S. oneidensisMR-1, whi
h might re�e
t the rather arti�
ial 
onditions we used, less 
areful mat
hing of the experimental
onditions for the two assays, or a simpler regulatory system � Z. mobilis ZM4 has just 65 trans
riptionfa
tors while S. oneidensis MR-1 has 243.Dis
ussionWe have shown that in diverse ba
teria, there is little 
orrelation between when genes are important for�tness and when they are more highly expressed. The la
k of 
orrelation does not result from a mismat
hbetween when we measured expression and when we measured �tness or from geneti
 redundan
y betweenparalogs. In S. oneidensis MR-1, adaptive 
ontrol seems to be rare ex
ept for amino a
id synthesis and
arbon sour
e 
atabolism, and nu
leotide synthesis is not under adaptive 
ontrol. In Z. mobilis ZM4 and inD. alaskensis G20, few of the biosyntheti
 genes are under adaptive 
ontrol, as their expression levels do notin
rease in minimal media. In 
ontrast, in E. 
oli, most biosyntheti
 genes, of all types, are downregulated11



in ri
h media. Our results do not seem 
onsistent with the traditional view that most of ba
terial generegulation is adaptive. We spe
ulate that the traditional view is an over-generalization from the adaptiveregulation of well-studied biosyntheti
 and 
ataboli
 pathways in E. 
oli and Ba
illus subtilis. Instead, ourresults suggest that indire
t 
ontrol is widespread and that it leads to suboptimal expression patterns.Suboptimal 
ontrol in the laboratoryWe have shown that the misregulation of many genes is detrimental to �tness and hen
e is suboptimal in thelaboratory. 24% of genes in S. oneidensis MR-1 are signi�
antly detrimental for �tness (above 0.4) in some
onditions. Furthermore, detrimental genes tend to be highly expressed, and genes are not downregulatedwhen they are detrimental (as would be expe
ted under a model of optimal standby 
ontrol). A 
hangein log2 abundan
e of 0.4 a
ross seven generations 
orresponds to a �tness advantage of 4% per generation(20.4/7 ≈ 1.04). This is far too large a bene�t from mutating a gene to be explained by the waste of 
ellularresour
es in making unneeded protein. (Few if any proteins a

ount for 4% of total expression.) Thus, thea
tivity of many ba
terial proteins imposes signi�
ant �tness 
osts in the laboratory, even at wild-type levelsof expression.Be
ause we measured mRNA levels and not protein levels, we 
annot test whether post-trans
riptionalregulatory me
hanisms are adaptive. However, if post-trans
riptional regulation were operating optimally,then it would eliminate the detrimental a
tivities of proteins. Furthermore, in ba
teria, repressing transla-tion often destabilizes the mRNA (Deana and Belas
o, 2005), so regulation of translation would a�e
t themRNA levels that we measured. Finally, in E. 
oli, genes with high mRNA expression tend to have highprotein expression (Lu et al , 2007; Tanigu
hi et al , 2010), whi
h implies a signi�
ant 
ost of unne
essaryexpression even if the protein is ina
tive. Thus, post-trans
riptional regulation 
annot explain why mu
h oftrans
riptional regulation appears to be suboptimal.In the laboratory, suboptimal 
ontrol seems to be more 
ommon than adaptive 
ontrol (Figure 5). Amongthe genes from S. oneidensisMR-1 that we have data for, about 8% are 
onstitutively lowly expressed, are notdetrimental to �tness, and do not have a strong 
orrelation between mutant �tness and relative expression.These genes might la
k adaptive 
ontrol be
ause the 
ost of regulation would not be worth it. Another 8%of genes are detrimental to �tness but are important for motility, whi
h is probably an adaptive lifestyle inthe wild but not in the laboratory. Another 1% of genes are detrimental to �tness and are potentially sel�shelements su
h as prophages or transposons � �sel�sh� regulation of these genes may bene�t the genes and notthe host. Together, these three explanations a

ount for just 17% of genes that we have data for. Another5% of genes have strong �tness-expression 
orrelations and are probably under adaptive 
ontrol. In 
ontrast,48% of genes are under suboptimal 
ontrol, at least in our laboratory 
onditions: they are either detrimentalto �tness, without being explained by motility or sel�shness, or they are strongly up- or down-regulatedbetween 
onditions without being important for �tness in either 
ondition (Figure 5). Another 23% of geneshave little phenotype or 
hange in expression in our 
onditions, so we 
annot determine if their 
ontrol isadaptive or not. The remaining 7% of genes had phenotypes in our mat
hed 
onditions but their expressionwas neither strongly adaptive nor strongly suboptimal. As they had a mean �tness-expression 
orrelationof +0.01 (whi
h is not signi�
antly di�erent from zero, P > 0.4, t test), we suspe
t that the regulation ofmany of these genes is suboptimal as well.Suboptimal 
ontrol in the wildA

ording to our model of indire
t 
ontrol, gene expression responses will be more adaptive if examinedunder natural 
onditions than in the laboratory. Intuitively, we are 
onfusing the ba
teria by growing themin unfamiliar 
onditions su
h as high nutrient levels, high 
ell densities, pure 
arbon sour
es, no 
ompetitionfrom other mi
roorganisms, and no predation. Also, indire
t 
ontrol may have evolved be
ause of 
orrelationsbetween environmental parameters that o

ur in the wild but not in our laboratory experiments. Measuringgene expression during slow growth at low 
ell densities in the presen
e of other mi
roorganisms seems
hallenging. Nevertheless, given the rapid rate of improvements in DNA and RNA sequen
ing, we hope thatit will soon be
ome feasible.Although we predi
t that ba
terial regulation will perform better under natural 
onditions, several fea-tures of ba
terial gene regulation seem likely to be suboptimal in the wild as well. First, we found many 
ases12



where genes with 
losely-related fun
tions had rather di�erent expression patterns. Although this appearssuboptimal, for pathways with a low 
ost of expression, it 
an be optimal for some steps to be 
onstitutiveand some steps to be regulated (Wessely et al , 2011). Be
ause the genes in our 
ases tended to have a high
ost of expression, this theory does not seem to apply, and we believe that the regulation of these genes issuboptimal. However, there 
ould be other explanations that we have not 
onsidered. Se
ond, many oper-ons 
ontain fun
tionally-unrelated genes, whi
h seems suboptimal (de Daruvar et al , 2002; Rogozin et al ,2002; Pri
e et al , 2006). In the stoma
h ba
terium Heli
oba
ter pylori, operons 
onsist predominantly offun
tionally unrelated genes (Pri
e et al , 2005; Sharma et al , 2010). Third, although operons tend to be
onserved a
ross related ba
teria (Wolf et al , 2001; Ermolaeva et al , 2001), operons are rarely 
onservedbetween distantly-related ba
teria, even if they 
ontain fun
tionally-related genes (Itoh et al , 1999). Whenoperon stru
tures 
hange, gene expression patterns 
hange as well, so it seems unlikely that gene regulationis optimal both before and after the 
hange (Pri
e et al , 2006). Fourth, theoreti
al analysis of the trans
rip-tional regulation of biosyntheti
 pathways suggests that the optimal design is for them to be regulated bytheir end produ
t, but many pathways are instead regulated by trans
ription fa
tors that sense metaboli
intermediates (Chubukov et al , 2012). This seems suboptimal and is also 
onsistent with our proposal thatsensors for the optimal signals might not be available.Indire
t 
ontrolWe proposed that the low 
orrelation between relative expression and mutant �tness re�e
ts indire
t 
ontrolof most genes by fa
tors that are unrelated to the fun
tion of the gene. We presented more eviden
e againstalternative models than eviden
e for indire
t 
ontrol, but we do have two �ndings that argue for indire
t
ontrol. First, many genes, with diverse fun
tions, are expressed 
onstitutively or are regulated by growthrate. As a 
lass, these genes show no 
orrelation between relative expression and mutant �tness. Se
ond,genes with a 
lose fun
tional relationship often have rather di�erent expression patterns if they are not inthe same operon; thus, these genes are probably not regulated by the same signals.We proposed that indire
t 
ontrol o

urs partly be
ause of the limited number of regulators present inba
terial genomes. Indire
t and suboptimal 
ontrol might also evolve more rapidly than adaptive dire
t 
on-trol. For example, spe
i�
 trans
ription fa
tors or spe
i�
 binding sites are not required to evolve 
onstitutiveor growth-regulated 
ontrol. Indire
t 
ontrol by global regulators may also evolve rapidly: be
ause globalregulators are present at high 
on
entrations, they will bind at low-a�nity sites that require relatively-littleinformation to spe
ify (Sengupta et al , 2002; Lozada-Chávez et al , 2008), so these sites should evolve morereadily than binding sites for other regulators (Stone and Wray, 2001; Berg et al , 2004).Our theory rests on the empiri
al observation that ba
terial genomes have far more operons than tran-s
ription fa
tors. For example, S. oneidensis MR-1 has 4,467 protein-
oding genes and around 2,800 tran-s
ription units but only 243 trans
ription fa
tors (5.4% of proteins). What limits the number of trans
riptionfa
tors in ba
terial genomes? There is a roughly linear relationship between the number of proteins en
odedby a ba
terial genome and the proportion of genes that en
ode trans
ription fa
tors (van Nimwegen, 2003).The relatively small number of trans
ription fa
tors in smaller ba
terial genomes suggests that the bene�tsof additional 
ontrol would be less than the 
osts or would be too small for sele
tion to operate. This mightre�e
t the adaptation of ba
teria with small genomes to narrow ni
hes. For example, we found little 
orre-lation between relative expression and �tness in Z. mobilis ZM4, whi
h utilizes only three di�erent 
arbonsour
es and has just 65 trans
ription fa
tors among its 1,892 protein-
oding genes. In ba
teria with largegenomes, trans
ription fa
tors are often a
quired by horizontal gene transfer (Pri
e et al , 2008), but the a
-quisition of additional trans
ription fa
tors might be limited be
ause trans
ription fa
tors that have similarDNA binding preferen
es will interfere with ea
h other (similar to the theory of (Itzkovitz et al , 2006)). Ifthe a
quisition of a trans
ription fa
tor that senses the relevant signal is sele
ted against, it might take along time for a new sensor to evolve.Alternative explanations for suboptimal 
ontrolAlthough we 
onsidered several other explanations for suboptimal 
ontrol, su
h as standby 
ontrol, anti
i-patory 
ontrol, or weak sele
tion on gene regulation, we do not believe that they are su�
ient to a

ountfor our results. First, if genes are under standby 
ontrol and are expressed when they are not important for13



�tness be
ause they might be needed in the future, then they should still be somewhat downregulated whenthey are not useful (Supplementary Figure 1), but this is not what we found. Conversely, we found thatgenes are not downregulated when they are detrimental to �tness. Se
ond, we looked for eviden
e that S.oneidensis MR-1 uses one 
ondition to anti
ipate growth in another 
ondition, but we found little eviden
eof it. Furthermore, anti
ipatory 
ontrol is predi
ted to o

ur along with adaptive 
ontrol and to have smallere�e
ts on expression patterns (Mit
hell and Pilpel, 2011). Third, although weak sele
tion might explain whysome of the weakly-expressed genes are 
onstitutive, we found that many genes are strongly detrimental to�tness in some 
onditions and that many of the other genes with apparently suboptimal expression patterns(i.e., growth regulation and/or no 
orrelation between expression and �tness) are highly expressed. Theregulation of these genes should be under strong sele
tion.Another explanation for suboptimal 
ontrol and a weak 
orrelation between expression and �tness is thatmany promoters are poorly �insulated� from environmental fa
tors (Sasson et al , 2012). Even if genes areregulated by trans
ription fa
tors that sense fun
tionally-relevant signals, their expression also �u
tuatesdue to irrelevant di�eren
es in environmental 
onditions (Sasson et al , 2012). For example, their promotersmight bind other trans
ription fa
tors at weak sites that evolve neutrally and are not deleterious enough forsele
tion to remove them (Lyn
h, 2007). Or the 
on
entration of a
tive trans
ription fa
tor might �u
tuatedue to fa
tors besides the signal that the trans
ription fa
tor senses.Poor insulation is like indire
t 
ontrol in that the gene's expression responds suboptimally to irrelevantsignals, but the e�e
t is proposed to evolve neutrally rather than in response to environmental 
orrelations.We expe
t poor insulation to redu
e the 
orrelation between when a gene is important for �tness and whenit is more highly expressed, but we are not sure that it 
an explain why most genes show no 
orrelation atall. We also showed that 
onstitutive expression and regulation by growth rate are widespread, whi
h doesnot �t the insulation theory. Furthermore, we found that many genes 
an be detrimental to �tness, whi
himplies strong sele
tion on misregulation, whi
h should remove the interfering sites. On the other hand,when we 
onsidered genes that have a 
lose fun
tional relationship but are not in the same operon, we sawmore 
oexpression than we might expe
t from the slight 
orrelation between expression and �tness for mostgenes (e.g., 
ompare Figure 3C and 3D). This might be explained by poor insulation � if two promoters areresponding to trans
ription fa
tors that sense relevant signals, but the 
on
entrations or a
tivities of thosetrans
riptions fa
tors are a�e
ted by irrelevant 
hanges in growth 
onditions, then expression from thosepromoters would be well-
orrelated with ea
h other yet �tness-expression 
orrelations would be modest.Another possible reason for the weak 
orrelation between expression and �tness is that optimal 
ontrolrequires 
omplex 
ombinatorial regulation. Among genes with 
hara
terized regulation in E. 
oli (Gama-Castro et al , 2011), 962 of 1,641 genes (59%) are regulated by more than one trans
ription fa
tor. Onepossible reason for why 
ombinatorial 
ontrol is widespread is to make up for the relatively limited numberof sensors. We spe
ulate that 
ombinatorial logi
 might perform poorly in laboratory 
onditions. Forexample, even if the sensed signals are fun
tionally relevant, the way in whi
h they are 
ombined might beadapted to natural 
onditions. We also suspe
t that 
ombinatorial 
ontrol implies a rugged �tness lands
apefor sele
tion on the promoter region, whi
h might make it di�
ult for optimal 
ontrol to evolve.Overall, we have shown that the regulation of most ba
terial genes is not adaptive, at least not astraditionally understood to involve responding to a physiologi
ally-relevant signal. In S. oneidensis MR-1,we found that almost half of genes are under suboptimal 
ontrol in the laboratory, while far fewer are underadaptive 
ontrol. To further understand the e
ologi
al role of ba
terial gene regulation, we will need tomeasure �tness and expression under more natural 
onditions.Materials and methodsFitness and expression data for S. oneidensis MR-1We 
olle
ted mat
hing mutant �tness and gene expression data for S. oneidensis MR-1 (ATCC 700550) in 15
onditions: aerobi
 growth in Luria-Bertani broth; aerobi
 growth in de�ned minimal media with 8 di�erent
arbon sour
es (20 mM D,L-la
tate, 20 mM pyruvate, 10 mM a
etate, 20 mM N-a
etylglu
osamine (NAG),5 mg/mL mixed amino a
ids (CAS), 1 mg/mL gelatin, 0.5% Tween-20, or 7.5 mM inosine); aerobi
 growthin de�ned la
tate medium with four di�erent stresses (70 µM 
opper(II) 
hloride; 1 mM sodium nitrite; 1.5
µM nalidixi
 a
id, an inhibitor of DNA gyrase; or a
id stress at pH 6); and anaerobi
 growth in a de�ned14



medium with 20 mM D,L-la
tate or 20 mM NAG as the 
arbon sour
e and 30 mM fumarate as the ele
trona

eptor. Our de�ned medium 
ontained 30 mM PIPES bu�er, salts (1.5 g/L NH4Cl, 0.1 g/L KCl, 1.75 g/LNaCl, 0.61 g/L MgCl2·6H20, 0.6 g/L NaH2PO4), Wolfe's vitamins, and Wolfe's minerals, at pH 7. For thestress experiments, the 
arbon sour
e was 20 mM D,L-la
tate. For growth at pH 6, we used 30 mM MESbu�er instead of PIPES. All S. oneidensis MR-1 samples were grown at 30◦C with shaking at 200 rpm.For ea
h 
ondition, we 
olle
ted gene expression data from wild-type 
ells and �tness data from two poolsof transposon mutants, and all three 
ultures for a given 
ondition were initiated at the same time with thesame media. Samples for gene expression were 
olle
ted in exponential phase, and samples for �tness were
olle
ted after 6-8 doublings of the population. In pilot experiments, it made little di�eren
e whether we
olle
ted �tness data in late exponential phase or in stationary phase (data not shown).For three 
onditions, we also measured gene expression during bat
h growth. We 
olle
ted 
ells at varyingtimes after ino
ulation of bat
h aerobi
 growth at OD600 of 0.1 on minimal la
tate medium (7 samples andmaximum OD=0.55), minimal NAG medium (6 samples and maximum OD=1.6), and LB (7 samples andmaximum OD=4.0).For �tness experiments, strain abundan
e was quanti�ed using a mi
roarray as des
ribed previously(Deuts
hbauer et al , 2011). Brie�y, we extra
ted genomi
 DNA, used PCR to amplify the tags that �bar
ode�ea
h strain, hybridized the ampli�ed tags to a A�ymetrix 16K TAG4 array, and s
anned the array (Pier
eet al , 2007). Ea
h strain's bar
ode a
tually 
ontains two di�erent tags � we ampli�ed the �uptags� from onepool and the �downtags� from the other pool, mixed them together, and hybridized them to one array.Fitness values for ea
h strain were 
omputed from the log2 ratio of abundan
e after growth versus thestart of the experiment. Fitness values for ea
h gene were the average of the per-strain values. Be
ausewe use two pools of mutants that are grown and assayed separately, and be
ause some strains are presentin both pools, we 
an verify the reliability of a �tness experiment by asking whether strains gave similarvalues from both pools. We quanti�ed this by looking at the 
orrelation of these strains' �tness values a
rossthe two pools. In our typi
al �tness experiment for S. oneidensis MR-1, the 
orrelation of strain �tnessvalues was 0.92, and all experiments had 
orrelations above 0.8 ex
ept for NAG/fumarate (r = 0.66). Inthe NAG/fumarate experiment, pairs of genes in the same operon did have well-
orrelated �tness values(r = 0.66, as 
ompared to r = 0.63 in our typi
al experiment).We believe that the phenotypes of these mutants are usually due to the loss of protein fun
tion. First,for 1,646 of the genes, we have �tness data for strains with insertions at more than one lo
ation within thatgene, and the �tness data for di�erent insertions within a gene are quite 
onsistent (r = 0.87 to 0.97 inthe 15 experiments). Se
ond, we previously 
omplemented 10 of these mutants, in
luding seven insertionswithin hypotheti
al proteins (Deuts
hbauer et al , 2011). Third, a 
aveat in using mutants with transposoninsertions is that the phenotype 
an be due to polar e�e
ts, in whi
h the mutation in an upstream gene a�e
tsthe expression of downstream genes in an operon. We previously showed that insertions within upstreamgenes often la
k the phenotypes of insertions within downstream genes, whi
h suggests that polarity is nota dominant fa
tor in these pools of mutants (Deuts
hbauer et al , 2011). Also, for studying whether theexpression pattern of an operon is adaptive or not, it is not essential to know whi
h gene in the operon isresponsible for the observed phenotype.To quantify gene expression, we used a 12-plex Nimblegen mi
roarray in whi
h ea
h se
tor has 122,643spots and 40,881 distin
t probes as des
ribed previously (Deuts
hbauer et al , 2011). Brie�y, we usedRNAProte
t (Qiagen), isolated total RNA (RNAeasy mini kit, Qiagen), prepared �rst-strand labeled 
DNA(SuperS
ript Plus Indire
t 
DNA Labeling Module, Invitrogen), and hybridized the labeled 
DNA to themi
roarray a

ording to Nimbelegen's instru
tions. Within ea
h experiment, the log-level of expression ofgenes in the same operon was highly 
orrelated (r = 0.75-0.88 for mat
hing experiments, but growth 
urveexperiments had values as low as 0.62). Furthermore, in ea
h 
omparison of gene expression between aerobi
growth in la
tate and one of the other 14 mat
hed 
onditions, the log-ratios of genes in the same operonwere highly 
orrelated (r = 0.80 − 0.90).Compendium of expression data for S. oneidensis MR-1We obtained 371 expression experiments from the Mi
robesOnline web site (Dehal et al , 2009), derivedprimarily from (Liu et al , 2005; Faith et al , 2008; Deuts
hbauer et al , 2011) and similar works. We removedexperiments and genes with a high proportion of missing values, leaving data for 3,844 genes a
ross 32915



experiments.Constitutive and growth-regulated genes in S. oneidensis MR-1We 
lassi�ed genes as 
onstitutive if the standard deviation of their log2 expression ratios, a
ross 329 
on-ditions, was under 0.5. Although this threshold is somewhat arbitrary, it was validated by the �nding thatfew of these genes are predi
ted to be regulated by spe
i�
 fa
tors.To identify growth-regulated genes, we examined the expression patterns of 24 essential protein 
ompo-nents of the ribosome (rplBCDFJLMNORTWX and rpsBEHIJLMNPQS). As expe
ted, these genes are quite
oexpressed, with a median pairwise 
orrelation of 0.83. We used the average expression pro�le of these ribo-somal genes to identify other putatively growth-
orrelated genes. Spe
i�
ally, we identi�ed 391 genes whose
oexpression with the pro�le is above 0.5, in
luding all of the original 24 genes. These �growth-regulated�genes are only slightly less likely than other genes to be regulated by spe
i�
 trans
ription fa
tors a

ordingto RegPre
ise (10.7% vs. 14.4%, P = 0.054, Fisher exa
t test). Nevertheless, we 
an 
on�rm that they aregrowth-regulated by examining their promoter sequen
es. In E. 
oli and presumably in S. oneidensis MR-1as well, the growth regulation of ribosomal protein genes is mediated by the alarmone ppGpp and the DksAprotein as part of the stringent response (Lemke et al , 2011). DksA binds to RNA polymerase and altersthe e�
ien
y of trans
ription initiation depending on various fa
tors in
luding the 
on
entration of the �rst(initiating) nu
leotide and a GC-ri
h �dis
riminator� between the -10 box and the initiation site (Paul et al ,2004; Travers, 1980; Haugen et al , 2006). We used a 
ombination of high-resolution �tiling� mi
roarrays and5' RNA-Seq to map the exa
t 5' ends of trans
ripts for 1,236 genes or operons from S. oneidensis MR-1 (seebelow). We found a substantial di�eren
e in the initiating nu
leotides between growth-regulated and othertrans
ripts: just 25% of growth-regulated trans
ripts begin with adenosine, while 51% of other trans
riptsdo (P < 10−7, Fisher exa
t test). The putative growth-regulated promoters also have a higher GC 
ontentat positions -4 to -1 than other promoters do (68% vs. 55%, P < 10−5, t test). Thus, many of the putativegrowth-regulated promoters in S. oneidensis MR-1 are a�e
ted by the stringent response.Trans
ript stru
tures of S. oneidensis MR-1We grew S. oneidensis MR-1 in minimal la
tate media and 
olle
ted high-resolution �tiling� mi
roarray dataand performed RNA sequen
ing targeting the 5' ends of trans
ripts, using proto
ols des
ribed previously(Pri
e et al , 2011). Brie�y, we extra
ted RNA from frozen 
ell pellets using RNeasy miniprep 
olumns withDNase treatment (Qiagen), 
on�rmed RNA quality with Agilent bioanalyzer, and depleted ribosomal RNAwith MICROBExpress kit (Ambion). For the tiling experiment, we then 
reated labeled �rst-strand 
DNAwith SuperS
ript (Invitrogen) to hybridize to an a mi
roarray (Nimblegen) with 2.01 million probes of 60nu
leotides ea
h. For the 5' RNASeq experiment, we used terminator 5'-phosphate-dependent exonu
lease(Epi
entre) to remove degraded trans
ripts, 
onverted 5'-triphosphate to 5'-monophosphate ends with RNA5' polyphosphatase (Epi
entre), ligated adapters onto the 5' end with T4 RNA ligase (Ambion), used randomhexamer primers that also in
luded a sequen
ing adaptor to 
reate 
DNA, and used PCR ampli�
ation toenri
h for DNA that 
ontained both adaptors (see (Pri
e et al , 2011) for details). The 5' RNA-Seq data(Illumina) gave 21.5 million reads that mapped uniquely to the genome. To identify trans
ript starts,we 
ombined lo
al peaks in the 5' RNA-Seq data with sharp rises in the tiling data (Pri
e et al , 2011).Spe
i�
ally, we used lo
al peaks in the 5' RNA-Seq data that had at least 50 reads and we required thesestarts to be within 30 nu
leotides of a sharp rise in the tiling data that had a lo
al 
orrelation to a stepfun
tion (Güell et al , 2009) of at least 0.8. We asso
iated a trans
ript start with a gene if it was up to 200nu
leotides upstream of the 5' end of the gene. For trans
ript start analyses, we 
onsidered only genes onthe main 
hromosome.Fitness and expression data for Z. mobilis ZM4Our standard growth 
ondition for Z. mobilis ZM4 (ATCC 31821) was aerobi
 growth at 30◦C in a ri
hmedium with 25 g/L glu
ose, 10 g/L yeast extra
t, and 2 g/L KH2PO4. We 
olle
ted �tness and expressiondata for Z. mobilis ZM4 grown in this 
ondition and with various inhibitory 
ompounds added, namely 0.45%furfuryl al
ohol, 4 mM 4-hydroxybenzaldehye, 5-10 mM 3-hydroxybenzoi
 a
id, 7% ethanol, 0.09%-0.12%16



a
eti
 a
id, 0.2% a
eti
 a
id, 7.5 mM 5-hydroxymethylfurfural, 1% butanol, 9.9-12.5 mM furoi
 a
id, 17-26mM levulini
 a
id, 0.1-0.2 M NaCl, 3-6 mM hydroquinone, 0.0004-0.00055% hydrogen peroxide, 2.5 mMvanillin, or a 
omplex stress provided by 6-8% hydrolyzed plant material. Some of the 
on
entrations aregiven as ranges be
ause the �tness experiments were done at more than one 
on
entration or at a di�erent
on
entration from the expression experiments. If the �tness experiments were done at more than one
on
entration or more than on
e then we averaged them. The 
orrelation of the per-gene �tness values fromexperiments with di�erent 
on
entrations of the same inhibitor was usually above 0.8, with one ex
eption.We also 
olle
ted �tness and expression data for growth in ri
h media at 37◦C and for growth at 30◦Cin a de�ned medium 
ontaining 20 g/L glu
ose, salts, and vitamins (Goodman et al , 1982). Fitness wasmeasured using a similar approa
h as in S. oneidensis MR-1; the two pools of transposon insertions that weused will be des
ribed in more detail elsewhere (J.M.S. et al., submitted). Most of the �tness experimentsfor Z. mobilis were part of this other study; the �tness experiments that are spe
i�
 to this study were for7% ethanol, 1% butanol, and growth at 37◦C. In the typi
al experiment for Z. mobilis ZM4, the 
orrelationof strain �tness values between the two pools was 0.94, and all experiments had 
orrelations above 0.8. Wemeasured gene expression with a mi
roarray from Nimblegen with 51,851 probes for 1,882 genes, using thesame proto
ols as for S. oneidensis MR-1. Within ea
h experiment, the log-level of expression of genes in thesame operon was 
orrelated (r = 0.58-0.82). Also, for ea
h experiment, the log-ratio of expression betweenthat 
ondition and the ri
h media 
ontrol was 
orrelated for genes in the same operon (r = 0.59-0.79).Constitutive and growth-regulated genes in Z. mobilis ZM4We 
onsidered genes in Z. mobilis ZM4 to be 
onstitutively expressed if the standard deviation of theirabsolute expression level, a
ross our 18 
onditions, was under 0.2. This a

ounted for 117 genes (7% of thegenes that we had both expression and �tness data for). We identi�ed growth-regulated genes by takingthe average expression pro�le of 48 ribosomal proteins and identifying genes that were 
oexpressed with thispro�le (r > 0.5). This sele
ted 352 genes (22% of the genes that we had both expression and �tness datafor).Fitness and expression data for D. alaskensis G20We grew D. alaskensis G20 (provided by Terry Hazen, University of Tennessee, Knoxville) anaerobi
ally at30◦C in a de�ned la
tate-sulfate medium (LS4D) and in a similar medium supplemented with yeast extra
t(LS4), as des
ribed previously for D. vulgaris Hildenborough (Pri
e et al , 2011). We 
olle
ted �tness datausing a similar approa
h as in S. oneidensis MR-1; the two pools of transposon insertions that we usedwill be des
ribed in more detail elsewhere (J.V.K. et al., in preparation). Unlike in S. oneidensis MR-1 orZ. mobilis ZM4, we used separate 
hips to assay the two pools for a given 
ondition: for ea
h sample, weampli�ed both the uptags and the downtags and we hybridized those to the same array. We averaged thelog2 intensities of the up- and down-tags together before further pro
essing. In both ri
h and minimal media,strain �tness was highly 
onsistent between the two pools (r = 0.94 and r = 0.97, respe
tively).We measured gene expression in D. alaskensis G20 with a high-resolution �tiling� mi
roarray (Nimblegen)with 2.1 million 60-mer probes, using the same proto
ols as with the S. oneidensis MR-1 tiling array. We
onsidered only probes for the 
oding strand of genes, we used quantile normalization to put the two data setsinto the same distribution, and we averaged the normalized log2 intensities a
ross the probes for ea
h gene.Genes in the same operon had highly-
orrelated expression di�eren
es between ri
h and minimal medium(r = 0.87).Analysis of mutant �tness dataIn previous work on �tness data from S. oneidensis MR-1 (Deuts
hbauer et al , 2011), we normalized the�tness values so that the median strain had a �tness of zero. Be
ause there 
an be di�erential e�
ien
y inextra
ting DNA of di�erent sizes, we did this separately for the main 
hromosome and the megaplasmid. Wehad found that some experiments had signi�
ant e�e
ts depending on whi
h mi
roplate the strain was grownon during assembly of the pools, so we also normalized the data so that ea
h �pool plate� had a median17



�tness of zero. Here, we used pool-plate normalization for S. oneidensis MR-1 and for Z. mobilis ZM4, butit was not needed for D. alaskensis G20.We also identi�ed a small trend by 
hromosome position in some �tness experiments. Spe
i�
ally, therewas sometimes a 
orrelation between �tness and the distan
e from the origin of DNA repli
ation. This mightresult from 
olle
ting the start and end samples at di�erent growth stages � if the 
ells are rapidly dividingthen the area near the origin of repli
ation will be at higher 
opy number. To remove this e�e
t, for strainson the main 
hromosome, we 
omputed a smooth estimate of how the �tness of ea
h strain varied with
hromosomal position (using the loess fun
tion in R) and we subtra
ted this from the �tness values.It appears that the median gene in Z. mobilis ZM4 has a �tness defe
t in most 
onditions. For example,in all of our experiments, the median �tness of genes with annotated fun
tions was below the median �tnessof purely hypotheti
al proteins. This might re�e
t its relatively small genome (1,892 proteins). Thus, settingthe median gene's �tness to zero was not appropriate. Instead, for genes on the main 
hromosome, we setthe mode of the distribution to zero. (More pre
isely, we estimated the mode by �nding the maximum ofthe kernel density, using the density fun
tion in R with default settings, and we subtra
ted the mode fromthe values.) Mode-based 
entering typi
ally lowered the �tness values by around 0.1. We used mode-based
entering for S. oneidensis MR-1 and D. alaskensis G20 as well, although it made less di�eren
e for thoseorganisms.To identify genes with strong e�e
ts on �tness, we used a threshold of ±0.75. A �tness of ±0.75 
or-responds to around a 7% 
hange in abundan
e per generation. E�e
ts above this magnitude were usuallystatisti
ally signi�
ant. For example, in the 15 mat
hed experiments in S. oneidensis MR-1, genes with�tness e�e
ts of ±0.75 or stronger have |z| > 2 in 83%-99% of 
ases (95% in the median experiment).Fitness z s
ores were 
omputed as des
ribed previously. Brie�y, we used a t-like test statisti
 for ea
hgene to summarize the 
onsisten
y of the measurements for its strains. This statisti
 also takes into a

ounthow noisy the data for other genes appears to be. Then, we transformed the test statisti
 to �t the standardnormal distribution by using ��tness� data from 
ontrol experiments in whi
h we independently re
overedthe pools from the freezer and assayed their relative abundan
e (Deuts
hbauer et al , 2011).To identify genes with more subtle but reprodu
ible e�e
ts on �tness, we grouped together experimentswith similar patterns (those having a pairwise 
orrelation of above 0.75). For ea
h group, we used Fisher'smethod to 
ombine the signi�
an
e of genes (as assessed using z s
ores). For ea
h gene, we 
orre
ted formultiple testing a
ross groups.Statisti
al toolsAll statisti
al analyses were 
ondu
ted in R 2.11 or 2.13 (http://r-proje
t.org/). Data was visualized in Rand in Mi
robesOnline (Dehal et al , 2009).Data availabilityAll �tness data is available in Mi
robesOnline (http://mi
robesonline.org/). Fitness data for S. oneidensisMR-1 is also availabe as Dataset 1. All gene expression, tiling, and 5' RNA-Seq data are available in theGene Expression Omnibus, in
luding expression data for S. oneidensis MR-1 (GSE39462), tiling data for S.oneidensis MR-1 (GSE39468), 5' RNA-Seq data for S. oneidensis MR-1 (GSE39474), expression data for Z.mobilis ZM4 (GSE39466), and tiling data for D. desulfuri
ans G20 (GSE39471). All data and sour
e 
odeare available from the authors' web site(http://genomi
s.lbl.gov/supplemental/exprV�tness2012/).A
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Figure 1 In Shewanella oneidensis MR-1, genes that are detrimental to �tness are highly expressed. (A)Absolute expression level and mutant �tness during aerobi
 growth in minimal la
tate medium. The mediangene's expression is set to 0. Genes with signi�
ant �tness e�e
ts (|z| > 2.5) are 
olor-
oded. The dottedverti
al line at 0.75 demar
ates seven strongly-detrimental genes. (B) In all 15 
onditions, genes that aredetrimental to �tness (z > 2.5) tend to be expressed more highly than the typi
al gene. The verti
al lineshows the proportion that we would expe
t by 
han
e (50%). NAG is N-a
etylglu
osamine and CAS is
asamino a
ids. Error bars are 95% 
on�den
e intervals (binomial test).
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Figure 2 In Shewanella oneidensis MR-1, di�erential �tness and relative expression are poorly 
orrelated.(A) Relative expression versus the di�eren
e in �tness for aerobi
 growth on a
etate versus aerobi
 growthon la
tate. Genes are 
olor-
oded if they are important for �tness on a
etate or la
tate but not the other
ondition (spe
i�
ally, if �tness is below -0.75 in that 
ondition but not in the other 
ondition and if thedi�eren
e in �tness between the 
onditions is at least 1.0). (B) Another view of the relative expression frompanel A: the distribution of relative expression for genes that are only important on a
etate, only importanton la
tate, or other genes. Out-of-range values are in
luded in the left- or right-most bins. The verti
al linesshow the averages for genes that are important only in a
etate (in red) or only in la
tate (in green). Theaverage upregulation of these two types of genes di�ers by 0.39 and the distributions overlap 
onsiderably(D = 0.23). (C) The 
hange in expression of di�erentially-�t genes in ea
h of 14 
onditions when 
omparedto aerobi
 la
tate. Ea
h 
omparison is performed as in panel B: the x axis shows the di�eren
e between thetwo averages and the y axis shows the Kolmogorov-Smirnov D statisti
 for how distin
t the two distributionsare. The arrow highlights the 
omparison between a
etate and la
tate from panel B. (D) Relative expressionversus the di�eren
e in �tness for 
ells growing in minimal la
tate medium with or without 
opper added.20
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Figure 3 In Shewanella oneidensis MR-1, few genes are under adaptive 
ontrol. (A) Absolute expressionversus �tness for tyrA and purH a
ross 15 growth 
onditions. The lines show the best �t for ea
h gene: tyrAtends to be expressed more highly when it is more important for �tness (r = −0.50), but purH does not(r = −0.01). (B) The distribution of �tness-expression 
orrelations, 
omputed as in panel A, for 3,247 genesand for 3,247 shu�ed 
ontrols. (C) The distribution of 
oexpression, a
ross 329 experiments, of pairs ofgenes that are not in the same operon and have 
losely-related fun
tions (i.e., mat
hing TIGR subroles andsimilar patterns of mutant �tness a
ross 195 experiments). We also show the distribution of 
oexpressionfor genes that are predi
ted to be in the same operon, as a positive 
ontrol, and for random pairs of genesthat have di�erent TIGR subroles and are not adja
ent or predi
ted to be in the same operon, as a negative
ontrol. (D & E) The distribution of �tness-expression 
orrelations (as in panel B) when 
onsidering onlygenes that have �tness of above 0.75 or below -0.75 in at least one of the 15 
onditions. In (D), we separateout 
onstitutive and growth-regulated genes from other genes, and the green arrow highlights the adaptiveregulation of some of the other genes. In (E), the genes are 
lassi�ed by their TIGR roles, whi
h highlightsthe adaptive 
ontrol of amino a
id synthesis genes but not other genes.21
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D. Desulfovibrio alaskensis G20
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Figure 4 Biosyntheti
 pathways are upregulated in minimal media in some ba
teria but not in others.We examined whether auxotrophs were upregulated in minimal media, as 
ompared to other genes, in (A)Es
heri
hia 
oli K-12; (B) Shewanella oneidensis MR-1; (C) Zymomonas mobilis ZM4; and (D) Desulfovibrioalaskensis G20. In all four organisms, the auxotrophs are annotated by TIGR role as being involved in aminoa
id, nu
leotide, or 
ofa
tor synthesis, and experimental data 
on�rms that they are important for growthin a de�ned medium but not in ri
h medium. For E. 
oli K-12, we used growth data of deletion mutantsfrom the Keio 
olle
tion (Baba et al , 2006) and expression data from (Allen et al , 2003). For the otherorganisms, we 
olle
ted �tness data using pooled transposon mutants and we 
olle
ted gene expression datausing mi
roarrays. Genes were 
onsidered important only in de�ned medium if their �tness was below -0.75in de�ned medium but not in ri
h medium and the di�eren
e in �tness was at least 1. The expression log2ratios are normalized so that the median value is 0. Log2 ratios that are below -2 or above 2 are in
luded inthe left- or right-most bins, respe
tively.
22



Figure 5 Adaptive, low-
ost, or suboptimal 
ontrol of genes in Shewanella oneidensis MR-1. Among thegenes with both �tness and expression data, we 
lassi�ed their 
ontrol by the following 
riteria. If a gene �tinto multiple 
ategories, it was 
ounted only in the �rst (top-most) 
ategory. First, we 
lassi�ed genes as beingunder adaptive 
ontrol if the �tness-expression 
orrelation, a
ross 15 mat
hed 
onditions, was under -0.5. Weused a threshold of -0.5 be
ause this is roughly where the a
tual distribution of �tness-expression 
orrelationsdiverges from the shu�ed distribution (Figure 3B); also, 53% of amino a
id synthesis genes are below thisthreshold. We 
lassi�ed genes as 
onstitutive and low 
ost if they had a low standard deviation of expression(in a large 
ompendium), they were not detrimental to growth (in 38 groups of �tness experiments), and theirabsolute expression level was at most 2-fold above the median gene in all of our 15 
onditions. Genes thatare signi�
antly detrimental to growth in one or more of 38 groups of �tness experiments were sub-
lassi�edinto genes that are important for motility (motility ��tness� below -0.4), sel�sh genes su
h as transposons,prophages, and restri
tion elements, or other unexplained genes. Genes were 
onsidered to 
hange expressionwithout being important for �tness if, in any of 14 
omparisons between 
onditions, the expression 
hangedby two-fold or more but the �tness value was between -0.4 and 0.4 in both 
onditions. The remaining geneswere 
lassi�ed as having little phenotype or 
hange in expression if their �tness value was between -0.75 and+0.75 in all 15 mat
hed 
onditions.
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Supplementary Figure 1 � Optimal 
ontrol under 
onstant or unpredi
tably-varying 
onditions.We 
onsider a protein with a maximum bene�t (not in
luding the 
ost of expression) of 0.2 per generationand whi
h rea
hes half-maximal bene�t at 0.0005 of protein (solid green line). The parameters are arbitrary,but we assume that the bene�t of the protein saturates be
ause this arises naturally in metaboli
 modelsand has been 
on�rmed experimentally (D. Fell, �Understanding the Control of Metabolism,� PortlandPress, 1997). (Intuitively, on
e a metaboli
 enzyme is highly expressed, in
reasing its expression furtherwill in
rease the 
on
entration of its produ
t, but unless the expression of downstream enzymes is in
reasedas well, downstream enzymes will be
ome saturated and total �ux through the pathway will only in
reaseslightly.) We 
onservatively assume that the protein has no detrimental a
tivity when unneeded and thatits 
ost of protein produ
tion is equal to the amount of protein (blue line). (A) Optimal adaptive 
ontrolwhen 
onditions rarely 
hange. The optimum expression maximizes bene�t minus 
ost (green 
ir
le), andthe �tness 
ost of disabling the protein is the di�eren
e between the two (red arrow). But when the proteinis not bene�
ial, the optimal expression level is 0. (B) Optimal �standby� 
ontrol under unpredi
tablyvarying 
onditions. We 
onsider two situations with unpredi
table future 
hanges in 
onditions. In the �rstsituation, the protein is 
urrently bene�
ial, but this may not 
ontinue, so on average, the bene�t is just80% of the bene�t under 
onstant 
onditions (dashed green line). In the se
ond situation, the protein is
urrently not bene�
ial, but 
onditions may 
hange, so on average, the bene�t is 20% of the bene�t under
onstant bene�
ial 
onditions (dotted green line). The expression level that maximizes bene�t minus 
ost inea
h situation is shown (green 
ir
les). The range of expression is less than in (A), but the expression levelstill 
hanges (bla
k arrow). Intuitively, be
ause the 
ost of expressing a small amount of unneeded proteinis small relative to the potential bene�t, it is bene�
ial to gamble on making a small amount of the protein.And be
ause of diminishing returns to making more of the protein, the optimal expression level is higherwhen the bene�t is higher. However, under 
onstant 
onditions with no bene�t, standby expression of theprotein in
urs a 
ost and �tness is redu
ed (red line).
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Supplementary Figure 2 � Mat
hed measurements of mutant �tness and gene expression inShewanella oneidensis MR-1. Ea
h pool of mutants 
ontains about 4,000 strains, and ea
h strain has atransposon inserted at a di�erent lo
ation in the genome and a tag that allows that strain to be distinguishedfrom the other strains in that pool (Oh et al. 2010).
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Dataset 1 � Fitness data for Shewanella oneidensis MR-1The �rst tab shows the metadata for the �tness experiments; the Experiment number is the heading in theother tables. The remaining tabs show the per-strain �tness values, the per-gene �tness values, and theper-gene z s
ores. In these tables, the lo
usId is the Mi
robesOnline (�VIMSS�) identi�er and the sysNameis the Lo
usTag.Dataset 2 � Pairs of fun
tionally-related genes in Shewanella oneidensis MR-1that are not in the same operon and are not 
oexpressedWe list pairs of genes that are 
o�t and in the same fun
tional 
ategory (TIGR subrole) but are not in thesame operon, near ea
h other in the genome, or 
oexpressed. For ea
h pair, we manually examined theirannotations and their �tness patterns to determine if they truly had 
losely-related fun
tions or not. Forpairs of �agellar genes, we also report whether they are 
oregulated and in the same �
lass� in Pseudomonasaeruginosa a

ording to Dasgupta et al. 2003. The data is provided as a tab-delimited �le.Referen
esAllen TE, Herrgard MJ, Liu M, Qiu Y, Glasner JD, Blattner FR, Palsson BO (2003) Genome-s
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